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Abstract

Large-scale epigenome mapping by the NIH
Roadmap Epigenomics Project, the ENCODE
Consortium and the International Human Epigenome
Consortium (IHEC) produces genome-wide DNA
methylation data at one base-pair resolution. We
examine how such data can be made open-access
while balancing appropriate interpretation and
genomic privacy. We propose guidelines for data
release that both reduce ambiguity in the
interpretation of open-access data and limit
immediate access to genetic variation data that are
made available through controlled access.
that the de-identified data are no longer linked to any
Sequencing-based techniques such as integrative tran-
scriptomic measurements of gene expression and epige-
nomic measurements of chromatin structure are
increasingly applied to the study of genome function .
Open sharing of human epigenome data is of great
importance to progress in the large-scale data-intensive
biomedical research carried out by the International
Human Epigenome Consortium (IHEC), of which we are
members. Data-sharing facilitates subsequent research,
enhancing reproducibility and the translation of research
into new knowledge of health and disease.
Evidence suggests that genetically mediated variation

within human tissues is abundant, easily mapped and
shared between tissues [1]. From a genomic privacy
standpoint, DNA sequence information can lead to the
re-identification of research participants’ data by genetic
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matching — this has been referred to as ‘attribute disclos-
ure attacks using DNA’ (ADAD) [2]. Here, we discuss the
current practices and privacy protections currently avail-
able for the release of genomic and related data. We
quantify the extent to which identifying DNA sequence
information confounds anonymization using the example
of methylation data, and conduct an ethical-legal analysis
of the issues raised with respect to the privacy and auton-
omy of research participants. Finally, we propose open-
access data-release policies to address these issues.
De-identification of data by removing direct identifiers

(such as participants’ name, date of birth, social insurance
numbers and facial images) is widely used for shared
research data. In North America, anonymization implies

identifiers. By contrast, coding refers to an alphanumeric
‘code’ that links de-identified data to identifiers. In this
analysis, we draw a distinction between the re-identificatin
of data — its attribution to an individual by matching
identified (named) genetic information to anonymized
data — and the potential to link two anonymized datasets.
Absolute anonymization of even small amounts of DNA
sequence information can be impossible given the extent
to which DNA sequence is unique to individuals [3, 4],
but epigenomic data lend themselves more readily to
anonymization.
When there is a reasonable risk that data can be re-

identified, or there are limitations on the use of the
data in different types of analyses, another strategy to
enable the data to be shared is to control access to it.
‘Controlled access’ (‘managed access’) has generally
been applied to data types that provide extensive DNA
sequence information from an individual. Researchers
must apply for access to such datasets and be approved
by a ‘Data Access Committee’ (DAC). The ability to re-
identify and misuse research data is considered less
likely when the data are shared under controlled access
arrangements that involve a review of applicants’
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credentials, a review of their research plans, verification
that the proposed research has been approved by an
ethics committee or that a waiver has been obtained,
and the signing of a contract referred to as a Data
Access Agreement that forbids (amongst other things)
the re-identification of data. DACs can also provide
some degree of post-authorization oversight of data use
[5]. These measures can, to varying degrees, limit data
access and analysis, so they have been perceived by
some members of the research community as hindering
‘crowd-sourcing’ or collaborative analysis of publically
funded genomic datasets [6]. Other concerns include
delays that result from the controlled access process
and its lack of transparency [7].
Numerous security strategies can increase the level of

protection of data (for example, firewalls or encryption)
or enhance privacy (for example, iDASH [8] and Bio-
PIN [9]). Typically though, data security measures serve
to reinforce controlled access distribution and do not
address its main limitations: restricting acceptable data
use and aggregation. An emerging approach to providing
broad access to data while protecting the privacy inter-
ests of research participants is that of data ‘safe havens’
— protected IT environments for pooling data (such as
DataSHIELD [10]). The strengths of this approach are
that it aims to reduce the risks of distributing large
amounts of data to individual researchers and decreases
reliance on contracts and other legal protections that are
neither fail-proof nor evenly provided internationally,
and which can be difficult to enforce.
Following the model of the National Institute of

Health (NIH) Roadmap Epigenomics project, an IHEC
partner, processed IHEC epigenomes are publically
accessible in appropriate data archives, track hubs or
similar summary data formats. Associated raw sequence
data and metadata information are also shared, either
through open-access or controlled-access mechanisms.
Similarly, The Cancer Genome Atlas (TCGA) provides
publically accessible ‘Level 3’ summarized methylation
calls, whereas controlled access to ‘Level 1’ and ‘Level 2’
data restricts the availability of raw sequence and muta-
tion calls [11]. Open-access data, which are freely avail-
able for anyone to use, typically include intensities of
signal (such as gene expression or DNA–protein inter-
action) or levels of methylated cytosine. Such summary
data do not report genetic variation directly, and their
release reflect the strategies developed for the open-
access release of array-based gene expression data by the
National Centre for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) or the European
Bioinformatics Institute (EMBL-EBI) ArrayExpress (AE)
databases. Users must rely on the data submitter for ap-
propriate processing of data, potentially leading to bio-
logical misinterpretation.
DNA methylation data are an example of a form of
epigenetic information that can lead to misinterpreted
results because of the presence of genetic variants,
given its reliance on CpG (cytosine-phosphate-guanine)
dinucleotide contexts (CpGs) as the unit of information.
Other components of epigenome mapping data (such as
DNase hypersensitivity sites or chromatin marks [12–14])
also show evidence of genetic governance, but the density
of these traits and how they are shared across tissues has
only been studied in smaller datasets. Bisulfite conversion
causes unmethylated cytosines to be converted to uracil,
allowing methylated and unmethylated cytosines to be dis-
tinguished. Whole-genome bisulfite sequencing (WGBS)
is a high-throughput, genome-wide DNA methylation
interrogation technique that reports methylated and
unmethylated cytosines at CpG sites within a reference
genome.
WGBS is biased at the start and end of reads because it

includes unmethylated cytosines that are added during
overhang repair and 5′ underconversion from adapter re-
annealing [15, 16]. It also confounds methylated cytosines
and hydroxymethylcytosines, which are of particular im-
portance in certain cell types (for example, in the nervous
system) [17, 18]. We focus on genetic confounders: WGBS
additively measures the frequency of cytosines in CpH
(cytosine-phosphate-(non-guanine nucleotide)) contexts,
as well as thymine polymorphisms.

Case study: genetic information in methylation
data
Strand-specific WGBS measures CpG methylation for
the forward and reverse strands independently, but
both strands usually have concordant methylation rates.
Nevertheless, when the cytosine of the CpG is mutated
to adenine or guanine on the forward strand, asymmet-
ric methylation rates are measured (Fig. 1). When the
cytosine is mutated to thymine, all reads are counted,
but forward reads that contain the thymine mutation
are miscounted as bisulfite-converted unmethylated
cytosines, and reverse reads measure CpH methylation
at the mutated site. In both cases, the polymorphism
can be detected by the base-paired genetic variation in
reverse reads [19, 20] or externally by direct genome
sequencing or genotyping arrays.
We identified genomic CpGs from WGBS in which

the measured methylation rate is due to genetic rather
than epigenetic variation and is independent of tissue
type (Fig. 2). We did this by filtering for CpGs that have
a static methylation rate in all tissues from the same
individual in the NIH RoadMap Epigenomics (Roadmap)
[21] WGBS samples (Additional file 1: Table S1) but
which vary between individuals. A total of 5.9 million
candidate CpGs were identified from a pool of 24
million well-measured CpGs present in most of the



Fig. 1 Genotypic differences in forward and reverse strand methylation. a (i) On reads from both strands of the wild-type C allele, the methylated
C usually remains as C after bisulfite conversion, and is counted as methylated. This results in a mean difference of methylation between the strands of
0. (ii) For the allele where the methylated C is replaced by A, reads on the forward strand have the A at the CpG site and are not counted, whereas the
reads on the reverse strand have the C bisulfite-converted to U and are counted as unmethylated. This results in a mixture of methylated and
unmethylated reads on the reverse strand, whereas there are only methylated reads on the forward strands. b Heterozygotes that have A and
C alleles (red) are compared with homozygotes that have two copies of the C allele (turquoise). We see negligible difference in methylation
rate between forward and reverse strands in the 26 homozygous individuals, but an average of around 50 % more methylation on the forward
versus the reverse strand in the 13 heterozygous individuals

Fig. 2 Example in which methylation is indirectly affected by a SNP. The CpG site is normally methylated (left) when the genomic sequence at a
downstream SNP position is a C. When the downstream SNP is mutated to a T, the CpG site is affected and becomes unmethylated, allowing the
conversion of the cytosine residues at the CpG site to uracil (right)

Dyke et al. Genome Biology  (2015) 16:142 Page 3 of 12



Dyke et al. Genome Biology  (2015) 16:142 Page 4 of 12
Roadmap samples, extrapolating to potentially 7.4 mil-
lion candidates among the 30 million CpGs genome-
wide (assuming that CpGs that are unassessed by lower
sequence coverage have similar distribution). When 3.6
million CpGs were evaluated using McGill Epigenome
Mapping Centre (EMC) [22] WGBS and single nucleo-
tide polymorphism (SNP) array data, 443,636 CpGs
showed correlation (R > 0.5, p < 0.05) with the presence
of an array-genotyped SNP within 10 kb. Of these,
354,710 (80 %) CpGs directly overlapped a known SNP
in dbSNP137 (Fig. 3). Of the genotype-correlated CpGs,
67,913 showed high (>98 %) predictive accuracy, with
53,294 CpGs (78 %) directly overlapping a known SNP.
Of the highly predictive genotype-correlated CpGs,
39,000 remained after the removal of sites where for-
ward and reverse strand methylation rates from WGBS
are discordant, another criterion used to filter the gen-
etic variation.
Public WGBS datasets therefore contain thousands of

genetic variants, predominantly known common vari-
ants, that disrupt CpGs. Other sites that show high
variability among individuals, but not tissues, may be
subject to indirect genetic effects or may contain rare
variants. We validated the Roadmap/EMC-identified
highly predictive genotype-correlated CpGs using inde-
pendent methylation and genotype sequencing data
from adipose tissue [23]; only CpGs overlapping a
Fig. 3 Example CpG sites showing correlation to genotype on chr9:115,000
STL0001, purple or red bars show methylation for the individual STL003. Eac
from one of the two individuals. Overall, DNA methylation patterns in the t
distinct, individual-specific pattern of methylation at CpGs overlapping SNP
SNPs (shaded box, bottom tracks)
known dbSNP137 SNP remained correlated in validation
(0/24 CpG sites not on a known SNP remained correlated
to the genotyped SNPs in validation). While thousands of
CpG-disrupting SNPs reporting CpG methylation were
found in public databases, no true ubiquitous ‘epigen-
otypes’ at actual CpGs were validated. Uncalled genetic
variants that disrupt the CpG context were highly
enriched among sites that were ‘differentially methylated’
between individuals, but had low inter-tissue variation
within individuals. Tissue-specific sites that are ‘differ-
entially methylated’ in different individuals are also
probably enriched for genetic variation, but intra-tissue
indirect genetic influences will be substantial [1].
Other methylation interrogating techniques also expose

genetic information. The Illumina Infinium Human-
Methylation 450 K BeadChip Array (450 K) provides
genome-wide microarray interrogation of 485,577 CpG
targets. We identified probes from public domain 450 K
data that had a static methylation rate in all tissues from
the same individual but which had variable methylation
rates between individuals. After excluding all 65 SNP-
targeting ‘rs’ probes, 1306 ‘cg’ probes (Additional file 2:
Table S2) matched leukemia cancer and normal cells by
genotype [24]. When validated in adipose tissue [25], these
probes showed extremely high correlation in monozygotic
twins compared with that in dizygotic twins and unrelated
individuals (Fig. 4).
–120,000. Blue or turquoise bars show methylation for the individual
h track shows DNA methylation patterns in a different tissue sample
wo individuals appear to be similar (top four tracks), but we can see a
s (shaded box, middle tracks) and, much rarer, at CpGs not overlapping



Fig. 4 Density of pairwise CpG methylation correlation between adipose tissue samples at selected CpGs. Pairwise correlation was calculated
between all possible pairs of TwinsUK adipose tissue samples. a All of the selected 1306 genotype-correlated CpGs on the 450 K array. b One or
more SNPs or mapping multiple sites are overlapped by 699 probes. c For 607 probes, there is no SNP in the probe-binding region. Correlations
at these sites between monozygotic twins is extremely high (green), whereas dizygotic twins are correlated to a lesser degree (red) and unrelated
individuals have markedly lower correlation (blue)
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Removing direct genetic variation
The strand-specific WGBS approach allows unequivocal
distinction between genetic and epigenetic variation
through direct sequencing of base-paired nucleotides at
the same position as the variation on the opposing
strand. Using Bis-SNP [19], we identified the genotype
of reference CpG sites from normal purified blood
WGBS datasets de novo (without dbSNP information),
validating against heterozygotes detected in genotyping
arrays. We identified 66.5 % of arrayed variants at CpGs,
reducing the fraction of CpG sites that contained vari-
ants from 11 % to 3.7 % of the genotyped CpGs. Of the
genotyped positions overlapping CpGs, 0.029 % were in-
correctly called (false positive SNP or incorrect variant
called). Low coverage (<10 reads) contributed to the vast
majority of the mislabeling.
Using SNP frequencies from dbSNP137, a median of

95 % of covered reference CpG positions in the WGBS
data were retained after removing detected SNPs and
unclear cytosine contexts. Detection of variants at geno-
typed CpGs was increased to 75 %, and erroneous SNP
calls were reduced to 0.024 %. When focusing on high-
coverage CpG sites (with a minimum of 15× coverage),
we identified 0.4–1.5 % (median 1.3 %) of high-coverage
CpGs per sample as having SNPs (samples had 1 million
to 20 million high-coverage CpGs, median 5.7 million).
We next examined differentially methylated CpGs
(methylation rate difference >30 %) between pairs of
samples. Overall, between 1 % and 50 % of the differen-
tially methylated cytosines (median 20 %) were identified
as overlapping sequence variants in one or both samples
(Fig. 5). When comparing the same blood cell type be-
tween different individuals, an extremely large fraction
(up to 50 %) of differentially methylated CpGs were due
to SNPs (median = 33 %). By contrast, samples from dif-
ferent cell types of the same individual (16 pairs in total
from 7 individuals) showed a median of 1.5 % overlap
with SNP calls, indicating that differential methylation at
heterozygous sites is rare. Varying both tissue and geno-
type, SNPs had an overall intermediate contribution to
the differential methylation (median 14 %) at CpG sites,
indicating that while CpGs that have true differential
methylation were detected (above the intra-tissue rate),
genetic variation at the CpG site remained a substantial
influencing factor.

Vulnerability of metadata
There remains a very small risk of re-identification of
research participants by matching their identified named
genomic information to data from a study participant. We
therefore consider the consequences of potential re-
identification of associated clinical/healthcare information



Fig. 5 Fraction of differentially methylated CpGs that overlap Bis-SNP observed SNP position compared with coverage. We observed relatively
low numbers of differentially methylated CpGs overlapping SNPs when comparing cell types of the same individual (red), and high numbers
overlapping SNPs when comparing the same cell type from different individuals (brown). An intermediate number overlap SNPs when both
cell type and genotype are varied
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and other lifestyle or demographic information, which
may be studied and available from metadata and study
parameters. Some of these metadata may also increase
the likelihood of re-identification of the dataset.
Epigenome mapping projects include samples from a

number of population cohorts with varying health condi-
tions, including rare diseases. It is clear that the epige-
nome is impacted by disease state; therefore, some
categorization of the health status of the donor may be
necessary depending on the tissue studied. The use of
controlled vocabulary with disease ontologies (such as
the NCI Metathesaurus used by IHEC) allows for this
information to be reported in a standardized manner,
which reduces the risk of inadvertent disclosure of more
detailed health information if a dataset were to be re-
identified. Nevertheless, some medical information does
not correspond neatly to existing ontology terms and it
may be necessary to allow for additional ‘free-form’ text
relating to disease and donor health status.
For individuals with a rare disease or other rare pheno-

type, disease or donor health status information could
potentially increase the risk of re-identification of epige-
nomic data in the same way as seemingly innocuous
‘demographic’ information. For example, full date of birth
and place of residence have been shown to enable re-
identification of healthcare data in some circumstances
[26]. Information on rare disease status can increase the
risk of re-identification not only because rare diseases are
rare, but also because the disease often presents outwardly
visible characteristics that could link a whole dataset more
rapidly to an individual. Furthermore, some rare diseases
imply potential carrier status for relatives and the disease
may also be associated with potentially stigmatizing infor-
mation. For example, bilateral striopallidodentate calcino-
sis, with fewer than 200 known cases and for which the
genetic basis is not fully understood (familial and sporadic
forms, genes unknown) may cause personality changes
and dementia [27]. Mental health information is generally
considered to be stigmatizing and it is often provided
special protection by law [28]. Severe conditions such as
this are, however, unlikely to be kept private once symp-
tomatic, so the main risk is the increased likelihood of re-
identification of other information in the dataset.
Rare disease information may also reveal an individ-

ual’s likely ancestry or geographical location. For ex-
ample, Tay-Sachs disease has a higher prevalence in
individuals of Ashkenazi Jewish descent [29], and Leigh
syndrome in the Saguenay-Lac-Saint-Jean region of
Quebec [30]. In some cases, such associations may re-
sult in a loss of privacy. Furthermore, the experience of
projects in which rare disease genetics data have been
shared indicates that patients and their families are



Dyke et al. Genome Biology  (2015) 16:142 Page 7 of 12
willing to accept voluntarily the risks associated with
potential re-identification if they have been explained
to them. While this acceptance of risk may not be
greater than in other research circumstances, it can be
presumed that there are greater expectations of benefits
from involvement in rare disease research. We propose
points to consider for assessing the risk of sharing rare
disease information in open-access data sets (Table 1).
These relate to the potential for re-identification, the
privacy and sensitivity of rare disease data, and research
participants’ consent.
While it is very difficult to quantify the likelihood of

re-identification in these cases, a ‘rarity’ threshold for
point 3, for example, could be considered that would be
relative to the availability of information on place of resi-
dence and the visibility of the disease (points 1 and 2). If
the answer to point 4 or 5 is yes, we recommend holding
rare disease information in ‘controlled access’ while
clearly indicating its availability.
Most current epigenome mapping projects focus on

the characteristics of human cell types or tissues and
de-identification is the norm. Nevertheless, datasets
commonly include two other important categories of
metadata — donor age and ethnicity — which impact
interpretation of the data and are therefore important
to share as openly as possible [31, 32]. The risk of re-
identification of anonymized datasets from ‘demo-
graphic’ metadata requires project-specific consider-
ation, depending mainly on other sources of available
information and on the group sizes of a given demo-
graphic [26]. Standards, such as the US Health Insur-
ance Portability and Accountability Act (HIPAA)
Privacy Rule, significantly decrease re-identification risk
(for example, by using age, not date of birth, with a cat-
egory for ages over 90 years) [33].
For ethnicity, the risk mainly applies to minority groups,

with the re-identification risk varying (similar to that for
rare disease metadata). Ethnic origin or ethnicity is
included as a surrogate marker for genetic similarity or
relatedness in order to improve the quality of research
Table 1 Points to consider when sharing rare disease
information

Points to consider

1 Is the place of residence provided (even indirectly, for example, in
the project name)?

2 Is the rare disease outwardly visible?

3 How rare is the disease?

4 Does the rare disease provide information about the likely
geographical location of individuals?

5 Does the rare disease provide information about ethnicity that may
be considered potentially stigmatizing?

6 Was the participant aware of the potential risks of data re-
identification?
results in terms of their significance generally and for indi-
viduals [34–36]. This metadata use creates difficulties with
respect to adopting publically acceptable group designa-
tions [37]. Given the diversity of approaches for recording
ethnicity (or not) in different parts of the world, and the
benefits of standardizing descriptors in research, consult-
ing local census categories and assigning a limited set of
choices based on the populations studied would help in
addressing social and political issues that might affect re-
search participants [38]. However, populations requiring
special attention, such as small ethnic groups that may be
more prone to the risks of re-identification, need to be
identified as such if their data are to be shared with extra
protections. This can lead to a quandary as census cat-
egories may purposely avoid asking for this information.
We suggest reviewing lists of proposed descriptors for
sample populations, and, if possible, providing preset lists
to select from that are based on locally acceptable designa-
tions such as those of national census categories. For small
or vulnerable populations, the determination of which will
also usually depend on local context, we also suggest mov-
ing this information (and potentially other data from these
individuals) to the ‘controlled access’ portion of the data.

Mitigating risk for data release
Anonymized genome-wide DNA sequence information
that is contained within public repositories can be linked
to individual participants [2]. The main reason this has
not prevented its public release in some circumstances
(for example, with appropriate consent and following an
assessment of the sensitivity and identifiability of associ-
ated metadata) is that, in the vast majority of cases, to do
so would require access to an individual’s identified gen-
etic data from another source, in which case the informa-
tion, health-related or otherwise, that it contains would
probably not be protected. Anonymized genome-wide
genetic data can also sometimes be re-identified by other
routes, such as through surname inference for well-
documented collections [39]. Furthermore, for functional
genomic data (such as RNA-expression profiles), consider-
able efforts would be required to match datasets by tissue
of origin and processing techniques. This has been studied
for gene expression arrays using pre-existing knowledge of
genetic variation that impacts gene expression differences
in populations [40] and is a much more complex route to
a privacy breach [2].
Open-access DNA methylome data contains DNA-

sequence information that could potentially be used as
re-identifying information through genetic matching.
However, the majority of genotype-resolving CpGs in
WGBS data directly overlap known SNPs, representing
other sequence contexts misleadingly released in CpG-
methylation tracks. The CpGs disrupted directly by
SNPs that are currently present in open-access epigenome
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data resources can be efficiently removed from high-
coverage data by pre-filtering prior to release using
existing algorithms or genotyping resources, with minimal
loss of ‘true epigenetic’ information. Over 75 % of the dis-
rupted CpGs could be eliminated with nearly 0 % errone-
ous calls, affecting only 1.5 % of the methylome. The
genotypically resolved raw datasets would still allow inter-
rogation of these disrupted CpGs, and in cases such as
cancer genomes, somatic mutations could be reported
while keeping germline mutations under controlled access
(as in the TCGA policy [11]). Unfortunately, filtering
cannot be used as effectively for all data types, including
that generated by non-stranded bisulfite-sequencing
methods (such as post-bisulfite adaptor tagging (PBAT)
[41]) and methylation array data. Nevertheless, the effects
of common genetic variation could still be reduced by
masking sites (CpGs or probes) that have common
SNPs [42, 43]. Methylation data with direct genotype
variation removed would have, in our view, very low re-
identification risk, probably in the same order as that
for functional genomic data. For summary-level open-
access data (where the user cannot reprocess the reads),
such steps should precede deposition to public archives
or availability in public track hubs by data producers.
Patterns of data omission resulting from variants at
CpGs, the presence of undetected genetic variation,
and the proven existence of strong indirect (non-CpG
disrupting) genetic effects on methylation within the same
tissue [1] all indicate that residual genetic information will
remain within methylome profiles. We have therefore also
proposed additional measures to mitigate the impact of
this very remote potential re-identification risk because
we see great value in openly sharing the associated health
and disease information and information on age and
ethnicity.
Generally speaking, the greater the likelihood of re-

identification and the greater the possibility that harm
may occur as a result of re-identification, the greater the
precautions and safeguards ought to be. For health-
related and other private information, it would not be
safe to assume that individuals would not generally feel
distressed and would not suffer from stigma, if not
discrimination, if this information were to become widely
available. The ‘reasonableness standard’ determines that
only information that can reasonably be expected to iden-
tify an individual is generally considered personal or pro-
tected by privacy laws and is included in many laws and
conventions addressing data protection [44]. Following
this standard, our position is based on careful evaluation
of the reasonable likelihood that the data might lead to re-
identification of participants. A similar approach has been
taken in other large-scale data sharing collaborations such
as the International Cancer Genome Consortium [45].
Furthermore, the level of privacy we feel we should strive
for is one at which both the likelihood of re-identification
and any potential resulting harm are very low. This level
of risk is justified in light of the public benefits of research,
better understanding of health and disease, and better pre-
ventative, diagnostic, prognostic and treatment strategies
that may result from epigenetic research. Our strategy re-
lies on responsible data preparation and can benefit from
additional ‘Points to Consider’, such as those proposed in
Table 1, for assessing rare disease information.
Although documented incidents of discrimination or

stigmatization on the basis of genetic information are
largely limited to highly hereditary Mendelian disorders,
these rare incidents have generated substantial media
coverage and significant public concern [46, 47]. Several
studies demonstrate that anxiety over genetic discrimin-
ation deters people from participating in promising
research projects and even from undertaking clinically
relevant genetic testing, even when anti-discrimination
legislation has been in place for many years [48–51]. Mis-
perception could be attenuated by providing more access-
ible information on privacy and anti-discrimination
protections and their limitations, and a more balanced
account of occurrences of genetic discrimination. Individ-
uals might also be willing to accept the low risk of re-
identification if the risks and benefits of the research are
carefully explained and researchers pledge to protect the
confidentiality of information to the extent possible. Infor-
mation about data sharing and its risks ought to be
provided during the consent process, as even consent to
the broad research use of data may not be understood by
participants as also implying consent to the widespread
international sharing of data. This presents challenges as
the risks or method of data sharing may not be known in
advance. Representations of absolute protection should be
avoided. Participants should also be informed that the
sharing of health and other information via social media
and other internet platforms may allow them to be
matched to their anonymized research data. Such a pa-
tient/participant-centered approach would be respectful of
participant autonomy and dignity, focusing on education
and transparency, and not promising unrealistic levels of
protection. The Personal Genome Project (PGP) pio-
neered a route for openly sharing integrated genomic,
environmental and medical or trait data [52] in 2005,
which was subsequently implemented in four countries
(USA, Canada, UK and Austria). PGP successfully ad-
dressed many issues using an innovative open consent
protocol [53]. Despite the explicit risk of re-identification,
only 3.8 % of participants have withdrawn from the PGP
over the past 10 years [54], suggesting high levels of par-
ticipant acceptance and low levels of adverse risk from
openly shared data.
Numerous regional and national laws have been

enacted to protect individuals from undesired use of
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their medical and genetic information, particularly from
genetic discrimination in insurance and employment
[55]. Nevertheless, it is currently unclear whether gen-
etic discrimination legislation would apply to all kinds of
epigenetic data because of the definitions of genetic data
used in such legislation [56, 57]. For example, the US
Genetic Information Nondiscrimination Act, 2008
(GINA) probably would not apply to epigenetic informa-
tion since under this law the definition of a genetic test
is limited to ‘an analysis of human DNA, RNA, chromo-
somes, proteins, or metabolites, that detects genotypes,
mutations or chromosomal changes’ [58]. The German
law ‘Gendiagnostikgesetz’ presents a similar situation as
it defines in its §3 a genetic test as a directed test to
diagnose the ‘genetic characteristics’ of a person. ‘Gen-
etic characteristics’ are defined as ‘inherited or in be-
tween conception and birth acquired, human-derived
genetic information’. In the US, the enactment of the Af-
fordable Care Act of 2010 provides important protec-
tions against genetic discrimination in health insurance
because it prohibits the denial of coverage or other ad-
verse treatment on the basis of any preexisting health con-
ditions or health information. Thus, this law goes beyond
GINA (which only applies to asymptomatic individuals) in
ensuring nondiscrimination against affected individuals in
health insurance coverage. In addition, requirements for
ethics review of research provide additional protection in
many jurisdictions.
More robust privacy and anti-discrimination laws may

be needed at the national level to efficiently address epi-
genetic discrimination without unduly restricting the
flow of research data. However, these concerns reach be-
yond the context of ‘OMICS’ research. Society may have
to re-conceptualize and contextualize medical confiden-
tiality and personal privacy so that they remain relevant
in the context of information technology developments
and the sharing of health information through social
media and the World Wide Web [59]. As demonstrated
by PGP [54] and advocated by the Global Alliance for
Genomics and Health, we believe it is possible to reconcile
privacy protection and the protection of public benefits
from scientific research that uses personal information by
carefully examining the risks and using tailored data-
release strategies.
Epigenomic data may also convey health-related and

environmental information directly (for example, his-
tory of cigarette smoking). Discussion of these issues
has been initiated [56, 60], but beyond the known im-
pacts of smoking, alcohol consumption, chronological
age and certain diseases (predominantly cancers),
which are often known at sampling, epigenetic signa-
tures for environmental exposures or disease risks have
not matured sufficiently to allow assessment of their
impact on data-sharing practices.
Removal of direct genotype information in methylome
analyses mitigates substantial re-identification risks.
Confident re-identification on the basis of the remaining
methylome and other open-access epigenomics data would
probably require considerable efforts. While absolute priv-
acy cannot be guaranteed with high-throughput genomic
data, we have outlined a consistent approach that limits
the risks associated with open-access metadata release,
aiming to allow categorization of data (for example, epige-
nome from normal or diseased tissue) rather than perform-
ing in-depth phenotypic correlations. Ideally, solutions that
provide the benefits of open-access sharing while protect-
ing the interests of research participants will be developed.
Simultaneously, efforts to improve controlled-access mech-
anisms and processes for granting informed consent
should be pursued. These include developing standard
consent information materials and data-access agreements,
and streamlining and further simplifying processes for the
approval of data access.
Methods
CpG site analysis from Roadmap Epigenomics WGBS data
We tested CpG sites reported in the NIH Roadmap
Epigenomics datasets in the following manner. To assess
sites for intra-individual variation, we considered only
sites with measurements in at least three samples from
the same individual, and we computed the standard
deviation of the methylation at the interrogated site. We
required over half of the individuals (three out of the
five) to have a standard deviation less than 0.07 at this
site (bottom 70 % in a test of 100,000 CpG sites). We
filtered for a minimum level of inter-individual variabil-
ity by requiring the range of the methylation among the
samples to be at least 15 % (top 35 % in a test of 100,000
CpG sites).
Internal assessment of genotype-methylation correlation
Genotypes for the samples were obtained using Illumina
2.5 M and 5 M genotyping arrays. For each CpG site, we
correlated the methylation at this site against all SNPs
within 10 kb. We modeled a linear relationship between
the genotype at the SNP site and the methylation rate at
the CpG site. This views each allele for the SNP as hav-
ing an associated methylation rate for the CpG site, and
the overall methylation rate at the CpG site as being the
average of the methylation rates of the SNP alleles
present in the individual. For each CpG-genotype pair,
we use the fitted slope and intercept across all available
samples to extrapolate the best-fit mean methylation rate
for each of the three genotypes. To predict the genotype
for a given methylation level, we selected the genotype
with methylation rate closest to the observed methyla-
tion level.
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Determination of genotype from WGBS and detection of
mislabeled epigenetic variation
Bis-SNP 0.82.2 [19] was applied to the aligned and fil-
tered reads of the purified blood samples to call SNPs
directly from the strand-specific sequencing data. We
limited our analysis to samples with at least 10× aver-
age read coverage (24 samples with read coverage from
12× to 22×, interrogating an average of 254,000 sites
per sample). We first applied Bis-SNP without provid-
ing any prior variation information from dbSNP, evalu-
ating all sites under the worst-case assumption of rare
SNPs with no prior information. Genotype of CpG-
context-altering heterozygous SNPs were determined
using the Illumina 2.5 M genotyping array. Genotypes
extracted using Bis-SNP without prior dbSNP fre-
quency were compared against genotyped reference
CpG sites to determine the ability to detect true hetero-
zygous mutations as well as the rate of CpGs that were
falsely identified as mutated.
We subsequently investigated the prevalence of se-

quence variation in methylation data by running Bis-
SNP using the SNP frequency information from
dbSNP137, and by examining sites with substantial read
coverage (≥15×) and large differences in methylation
between samples (>30 %).
Roadmap Epigenomics WGBS data
Processed graphs of methylation proportions aligned to
hg19 from Roadmap Epigenomics WGBS datasets were
downloaded from the NCBI GEO repository [61]. We
considered samples when multiple tissues were available
from the same individual, a total of 49 tissue samples
across five individuals (Additional file 1: Table S1). Sam-
ples were processed for bisulfite-converted methylation
sequencing as described by Lister et al. [62]. CpG sites
that had at least four reads (combining reads on both
strands) were reported.
McGill epigenome mapping centre datasets
We assessed the correlation between methylation and
genotypes in seven projects spanning tissues from naïve
T cells (11 samples), cortical and trabecular bone (3 sam-
ples), muscle (7 samples), purified blood (29 T-cell, 20
monocyte and 7 B-cell samples) and whole peripheral
blood (6 samples), crushed bone (3 samples), and adipose
tissue (8 samples) (97 samples in total). Sequencing data
are available through the McGill Epigenomics Mapping
Portal [22]. Raw data are available through EGA under the
study “McGill Epigenomics Mapping Centre” [EGA:
EGAS00001000995].
We used the subset of the purified blood samples ob-

tained from 28 normal Swedish individuals to evaluate
genetic variation that had been mislabeled as epigenetic
differences. A total of 37 samples were analyzed from the
three purified blood cell populations (CD14- CD4+ T-cell
samples, CD14+ monocyte samples and CD19+ B-cell
samples).
DNA extraction
Genomic DNA (gDNA) was isolated using the NORGEN
purification kit (Norgen Biotek Corporation, Canada)
according to the manufacturer’s protocol. All quantifica-
tions were carried out using Quant-iT PicoGreen (Life
Technologies, Burlington, ON, Canada).
Whole-genome shotgun bisulfite sequencing
WGBS gDNA library preparations were carried out using
the TruSeq DNA Sample Prep Kit v2 (Illumina) with an
added bisulfite conversion step. gDNA (1–3 μg) spiked
with 0.1 % (w/w) unmethylated λ DNA (Promega,
Madison, WI, USA) was fragmented to 300–400 bp
peak size using the focused-ultrasonicator E210 (Covaris,
Woburn, MA, USA) to generate double-stranded DNA
with 3′ or 5′ overhangs. Fragment size distribution was
controlled on a Bioanalyzer DNA 1000 Chip (Agilent,
Mississauga, ON, Canada). End repair, sample purification
with AMPure beads (Beckman Coulter, Mississauga, ON,
Canada), adenylation of 3′ ends, and adaptor ligation was
carried out as per Illumina’s recommendations. The
ligation product was cleaned up by one AMPure purifica-
tion step, the purified DNA then analyzed on a Bioanaly-
zer High Sensitivity DNA Chip (Agilent), and quantified
by PicoGreen before undergoing bisulfite conversion
using the Epitect Fast DNA Bisulfite Kit (Qiagen,
Toronto, ON, Canada) according to the manufacturer’s
protocol. Bisulfite-converted DNA was quantified using
OliGreen (Life Technologies), and based on quantity
amplified by four to six cycles of PCR using the Hifi
Uracil + DNA polymerase (Kapa Biosystems, Woburn,
MA, USA) according to the manufacturer’s protocol.
Amplified libraries were validated and quantified on
Bioanalyzer High Sensitivity DNA Chips and underwent
100 bp paired-end sequencing on Illumina HiSeq2000
or HiSeq2500 systems.
Generated reads were aligned to the bisulfite-converted

reference genome using the Burrows-Wheeler Alignment
tool (BWA). A number of reads were removed as de-
scribed by Johnson et al. [63]: (i) clonal reads, (ii) reads
with low mapping quality score (<20), (iii) reads with more
than 2 % mismatch to converted reference over the align-
ment length, (iv) reads mapping on the forward and re-
verse strand of the bisulfite converted genome, (v) read
pairs not mapped at the expected distance based on library
insert size, and (vi) read pairs that mapped in the wrong
direction.
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Additional files

Additional file 1: Table S1. List of the individuals and tissue samples in
the WGBS datasets analyzed from the NIH Roadmap Epigenomics project.

Additional file 2: Table S2. List of the subset of probes from the 450 K
that are consistent across tissues of the same individual but that vary
between individuals, providing a basis for distinguishing individuals on
the basis of methylation in any tissue.
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