Email updates

Keep up to date with the latest news and content from Genome Biology and BioMed Central.

Open Badges Research news

Transplastomic tomatoes

Jonathan B Weitzman

Genome Biology 2001, 2:spotlight-20010903-01  doi:10.1186/gb-spotlight-20010903-01

The electronic version of this article is the complete one and can be found online at:

Published:3 September 2001

© 2001 BioMed Central Ltd

Research news

Plants have three genomes, each contained in a separate cellular compartment; the nucleus, the mitochondrion and the plastid. The higher plant plastid genome is a double-stranded circle of 120-160 kb, encoding about 130 genes. The development of plastid transgene applications has been hampered by the technical limitations of tissue culture and regeneration protocols. In the September issue of Nature Biotechnology, Ruf et al. report the development of a plastid transformation system for tomato, Lycopersicon esculentum, and generation of the first edible transplastomic fruits (Nature Biotechnology 2001, 19:870-875). Ruf et al. developed new transformation vectors for efficient delivery of foreign genes to chlororoplasts. They then created tomato plants expressing a selectable spectinomycin-resistance marker gene, aadA. Transformation procedures were modified by using low-light conditions and an extended selection phase, to optimize success. Ruf et al. found that the AadA protein was expressed at high levels in the tomato fruit, comprising about 0.5-1% of the total soluble cellular protein. This technology will open up new possibilities for the development of plants expressing edible vaccines, antibodies ('plantibodies') and drugs.


  1. The chloroplast genome

    PubMed Abstract OpenURL

  2. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products.

    PubMed Abstract | Publisher Full Text OpenURL

  3. [] webcite

    Nature Biotechnology

  4. Transgenic plants as factories for biopharmaceuticals.

    PubMed Abstract | Publisher Full Text OpenURL